見光是電磁波譜中人眼可以感知的部分,可見光譜沒有精確的范圍;一般人的眼睛可以感知的電磁波的波長在400~760nm之間,但還有一些人能夠感知到波長大約在380~780nm之間的電磁波。
正常視力的人眼對波長約為555nm的電磁波最為敏感,這種電磁波處于光學頻譜的綠光區域。人眼可以看見的光的范圍受大氣層影響。大氣層對于大部分的電磁輻射來講都是不透明的,只有可見光波段和其他少數如無線電通訊波段等例外。不少其他生物能看見的光波范圍跟人類不一樣,例如包括蜜蜂在內的一些昆蟲能看見紫外線波段,對于尋找花蜜有很大幫助。
將太陽光通過三棱鏡,分解成紅橙黃綠青藍紫7種顏色,而不是紅綠藍3種顏色,說明自然界的顏色并不完全是由紅綠藍3種顏色構成。但是對于普通人來說,三基色就能表現出所有的顏色。所謂的三基色,即紅綠藍,是可以混合讓人感覺到自然界所有的顏色,但是并不是真正獲得了這些顏色真正的太陽光也不是7種顏色,而是從紅外到紫外之間的所有連續波長的光波組成,如果非得說有多少種顏色,那就是無窮多種。
可見光的特性
可見光互補色按一定的比例混合得到白光。如藍光和黃光混合得到的是白光。同理,青光和紅光混合得到的也是白光。顏色環上任何一種顏色都可以用其相鄰兩側的兩種單色光,甚至可以從次近鄰的兩種單色光混合復制出來。如黃光和紅光混合得到橙光。較為典型的是紅光和綠光混合成為黃光。
如果在顏色環上選擇三種獨立的單色光。就可以按不同的比例混合成日常生活中可能出現的各種色調。這三種單色光稱為三基色光。光學中的三基色為紅、綠、藍。這里應注意,顏料的三原色為青,品紅,黃。但是,三原色的選擇完全是任意的。
當太陽光照射某物體時,某波長的光被物體吸取了,則物體顯示的顏色(反射光)為該色光的補色。如太陽光照射到物體上,若物體吸取了波長為400 ~435nm的紫光,則物體呈現黃綠色。
可見光輻射
可見光輻射一般指太陽輻射光譜中 0.38~0.76 微米波譜段的輻射,由紫、藍、青、綠、黃、橙、紅等七色光組成。是綠色植物進行光合作用所必須的和有效的太陽輻射能。到達地表面上的可見光輻射隨大氣渾濁度、太陽高度、云量和天氣狀況而變化??梢姽廨椛浼s占總輻射的45~50%。
應用
通信技術
可見光通信技術,是利用熒光燈或發光二極管等發出的肉眼看不到的高速明暗閃爍信號來傳輸信息的。將要傳輸的信號連接在照明裝置上,在接收端前端加一個光電轉換裝置,插入電源插頭驅動照明裝置工作即可使用。利用這種技術做成的系統可實現在室內照明的同時,進行信息傳輸,因而具有廣泛的開發前景。
遙感技術
可見光遙感(visible spectral remote sensing)是指傳感器工作波段限于可見光波段范圍(0.38~0.76微米)之間的遙感技術。
電磁波譜的可見光區波長范圍約在0.38~0.76微米之間,是傳統航空攝影偵察和航空攝影測繪中最常用的工作波段。因感光膠片的感色范圍正好在這個波長范圍,故可得到具有很高地面分辨率和判讀與地圖制圖性能的黑白全色或彩色影像。但因受太陽光照條件的極大限制,加之紅外攝影和多波段遙感的相繼出現,可見光遙感已把工作波段外延至近紅外區(約0.9微米)。在成像方式上也從單一的攝影成像發展為包括黑白攝影、紅外攝影、彩色攝影、彩色紅外攝影及多波段攝影和多波段掃描,其探測能力得到極大提高??梢姽膺b感以畫幅式航天攝影機的應用為標志的航天攝影測量很有發展潛力。
云圖
衛星觀測儀器在可見光波段感應地面和云面對太陽光的反射,并把它顯示成一張平面圖象,即為可見光云圖。圖像的黑白程度是表示地面和云面的反照率大小,白色表示反照率大,黑色表示反照率小。一般說來,云愈厚,其亮度較亮。如果太陽光的照明條件一樣,對同樣厚的云來說,水滴云比冰晶云要亮。如大厚塊的云,尤其是積雨云,為濃白色;中等厚度的云(卷層云、高層云、霧、層云、積云等)為白色;大陸上薄而小塊的云區(如晴天積云)為灰白色等。